This function calculates the overall probability of acceptance for given microbiological distribution such as lognormal.
prob_accept(c, r, t, mu, distribution, K, m, sd)
acceptance number
number of primary increments in a grab sample or grab sample size
number of grab samples
location parameter (mean log) of the Lognormal and Poisson-lognormal distributions on the log10 scale
what suitable microbiological distribution we have used such as 'Poisson gamma'
or 'Lognormal'
or 'Poisson lognormal'
dispersion parameter of the Poisson gamma distribution (default value 0.25)
microbiological limit with default value zero, generally expressed as number of microorganisms in specific sample weight
standard deviation of the lognormal and Poisson-lognormal distributions on the log10 scale (default value 0.8)
Probability of acceptance
Based on the food safety literature, for given values of c
, r
and t
, the probability of detection in a primary increment is given by, \(p_d=P(X > m)=1-P_{distribution}(X \le m|\mu ,\sigma)\) and acceptance probability in t
selected sample is given by \(P_a=P_{binomial}(X \le c|t,p_d)\).
If Y be the sum of correlated and identically distributed lognormal random variables X, then the approximate distribution of Y is lognormal distribution with mean \(\mu_y\), standard deviation \(\sigma_y\) (see Mehta et al (2006)) where \(E(Y)=mE(X)\) and \(V(Y)=mV(X)+cov(X_i,X_j)\) for all \(i \ne j =1 \cdots r\).
The parameters \(\mu_y\) and \(\sigma_y\) of the grab sample unit Y is given by, $$\mu_y =\log_{10}{(E[Y])} - {{\sigma_y}^2}/2 \log_e(10) $$ (see Mussida et al (2013)). For this package development, we have used fixed \(\sigma_y\) value with default value 0.8.
Mussida, A., Vose, D. & Butler, F. Efficiency of the sampling plan for Cronobacter spp. assuming a Poisson lognormal distribution of the bacteria in powder infant formula and the implications of assuming a fixed within and between-lot variability, Food Control, Elsevier, 2013 , 33 , 174-185.
Mehta, N.B, Molisch, A.F, Wu, J, & Zhang, J., 'Approximating the Sum of Correlated Lognormal or, Lognormal-Rice Random Variables,' 2006 IEEE International Conference on Communications, Istanbul, 2006, pp. 1605-1610.
c <- 0
r <- 25
t <- 30
mu <- -3
distribution <- 'Poisson lognormal'
prob_accept(c, r, t, mu, distribution)
#> [1] 0.2637941